Galileo Computing < openbook > Galileo Computing - Professionelle Bücher. Auch für Einsteiger.
Professionelle Bücher. Auch für Einsteiger.

Inhaltsverzeichnis
Vorwort
1 Java ist auch eine Sprache
2 Sprachbeschreibung
3 Klassen und Objekte
4 Der Umgang mit Zeichenketten
5 Mathematisches
6 Eigene Klassen schreiben
7 Angewandte Objektorientierung
8 Exceptions
9 Generics, innere Klassen
10 Die Klassenbibliothek
11 Threads und nebenläufige Programmierung
12 Datenstrukturen und Algorithmen
13 Raum und Zeit
14 Dateien und Datenströme
15 Die eXtensible Markup Language (XML)
16 Grafische Oberflächen mit Swing
17 Grafikprogrammierung
18 Netzwerkprogrammierung
19 Verteilte Programmierung mit RMI und Web–Services
20 JavaServer Pages und Servlets
21 Applets
22 Midlets und die Java ME
23 Datenbankmanagement mit JDBC
24 Reflection und Annotationen
25 Logging und Monitoring
26 Sicherheitskonzepte
27 Java Native Interface (JNI)
28 Dienstprogramme für die Java-Umgebung
Stichwort

Download:
- ZIP, ca. 14,1 MB
Buch bestellen
Ihre Meinung?

Spacer
<< zurück
Java ist auch eine Insel (8. Auflage) von Christian Ullenboom
Programmieren mit der Java Standard Edition Version 6
Buch: Java ist auch eine Insel (8. Auflage)

Java ist auch eine Insel (8. Aufl.)
8., aktual. Auflage, geb., mit DVD
1.475 S., 49,90 Euro
Galileo Computing
ISBN 978-3-8362-1371-4
Pfeil 5 Mathematisches
Pfeil 5.1 Repräsentation ganzer Zahlen – das Zweierkomplement
Pfeil 5.2 Fließkommaarithmetik in Java
Pfeil 5.2.1 Mantisse und Exponent
Pfeil 5.2.2 Spezialwerte Unendlich, Null, NaN
Pfeil 5.3 Wertebereich eines Typs und Überlaufkontrolle
Pfeil 5.3.1 Behandlung des Überlaufs
Pfeil 5.4 Die Eigenschaften der Klasse Math
Pfeil 5.4.1 Attribute
Pfeil 5.4.2 Absolutwerte und Maximum/Minimum
Pfeil 5.4.3 Winkelfunktionen
Pfeil 5.4.4 Runden von Werten
Pfeil 5.4.5 Wurzel und Exponentialfunktionen
Pfeil 5.4.6 Der Logarithmus
Pfeil 5.4.7 Rest der ganzzahligen Division
Pfeil 5.4.8 Zufallszahlen
Pfeil 5.5 Mathe bitte strikt
Pfeil 5.5.1 Strikt Fließkomma mit strictfp
Pfeil 5.5.2 Die Klassen Math und StrictMath
Pfeil 5.6 Die Random-Klasse
Pfeil 5.6.1 Objekte aufbauen und der Seed
Pfeil 5.6.2 Zufallszahlen erzeugen
Pfeil 5.6.3 Pseudo-Zufallszahlen in der Normalverteilung
Pfeil 5.7 Große Zahlen
Pfeil 5.7.1 Die Klasse BigInteger
Pfeil 5.7.2 Methoden von BigInteger
Pfeil 5.7.3 Ganz lange Fakultäten
Pfeil 5.7.4 Große Fließkommazahlen mit BigDecimal
Pfeil 5.7.5 Mit MathContext komfortabel die Rechengenauigkeit setzen
Pfeil 5.8 Zum Weiterlesen


Galileo Computing - Zum Seitenanfang

5.3 Wertebereich eines Typs und Überlaufkontrolle Zur nächsten ÜberschriftZur vorigen Überschrift

Die Klassen Byte, Short, Integer, Long, Float und Double besitzen die Konstanten MIN_VALUE und MAX_VALUE für den minimalen und maximalen Wertebereich. Die Klassen Float und Double verfügen zusätzlich über die wichtigen Konstanten NEGATIVE_INFINITY und POSITIVE_INFINITY für minus und plus unendlich und NaN (Not a Number, undefiniert).


Hinweis Integer.MIN_VALUE steht mit –2147483648 für den kleinsten Wert, den die Ganzzahl annehmen kann. Double.MIN_VALUE steht jedoch für die kleinste positive Zahl (beste Näherung an 0), die ein Double darstellen kann (4.9E–324).


Alle Wrapper-Klassen überschreiben toString() von Object so, dass sie eine String-Repräsentation des Objekts zurückgeben.


Galileo Computing - Zum Seitenanfang

5.3.1 Behandlung des Überlaufs topZur vorigen Überschrift

Bei einigen mathematischen Fragestellungen müssen Sie feststellen können, ob Operationen wie die Addition, Subtraktion oder Multiplikation den Zahlenbereich sprengen, also etwa den Ganzzahlenbereich eines Integers von 32 Bit verlassen. Passt das Ergebnis einer Berechnung nicht in den Wertebereich einer Zahl, so wird dieser Fehler nicht von Java angezeigt; weder der Compiler noch die Laufzeitumgebung melden dieses Problem. Es gibt auch keine Ausnahme.

Mathematisch gilt a * a / a = a, also zum Beispiel 100 000 * 100 000 / 100 000 = 100 000. In Java ist das anders, da wir bei 100 000 * 100 000 einen Überlauf im int haben.

System.out.println( 100000 * 100000 / 100000 );     // 14100

liefert daher 14100. Wenn wir den Datentyp auf long erhöhen, indem wir hinter ein 100 000 ein L setzen, sind wir bei dieser Multiplikation noch sicher, da ein long das Ergebnis aufnehmen kann.

System.out.println( 100000L * 100000 / 100000 );    // 100000

Überlauf erkennen

Für die Operationen Addition und Subtraktion lässt sich das noch ohne allzu großen Aufwand implementieren. Wir vergleichen dazu zunächst das Ergebnis mit den Konstanten Integer.MAX_VALUE und Integer.MIN_VALUE. Natürlich muss der Vergleich so umgeformt werden, dass dabei kein Überlauf auftritt, also a + b > Integer.MAX_VALUE ist. Überschreiten die Werte diese maximalen Werte, ist die Operation nicht ohne Fehler möglich, und wir setzen das Flag canAdd auf false. Hier die Programmzeilen für die Addition:

if ( a >=0 && b >= 0 ) 
  if ( ! (b <= Integer.MAX_VALUE – a) ) 
    canAdd = false; 
if ( a < 0 && b < 0 ) 
  if ( ! (b >= Integer.MIN_VALUE – a) ) 
    canAdd = false;

Bei der Multiplikation gibt es zwei Möglichkeiten: Zunächst einmal lässt sich die Multiplikation als Folge von Additionen darstellen. Dann ließe sich wiederum der Test mit der Konstanten Integer.XXX_VALUE durchführen. Diese Lösung scheidet jedoch wegen der Geschwindigkeit aus. Der andere Weg sieht eine Umwandlung nach long vor. Das Ergebnis wird zunächst als long berechnet und anschließend mit dem Ganzzahlwert vom Typ int verglichen.

Dies funktioniert jedoch nur mit Datentypen, die kleiner als long sind. long selbst fällt heraus, da es keinen Datentyp gibt, der größer ist. Mit ein wenig Rechenungenauigkeit würde ein double jedoch weiterhelfen, und bei präziserer Berechnung kann BigInteger helfen. Bei der Multiplikation im Wertebereich int lässt sich ähnlich wie bei der Addition auch b > Integer.MAX_VALUE / a schreiben. Bei b == Integer.MAX_VALUE / a muss ein Test genau zeigen, ob das Ergebnis in den Wertebereich passt.

Die folgende Funktion canMulLong() soll bei der Frage nach dem Überlauf helfen:

Listing 5.2 Overflow.java

import java.math.BigInteger; 
 
public class Overflow 
{ 
  private final static BigInteger MAX = BigInteger.valueOf( Long.MAX_VALUE ); 
 
  public static boolean canMulLong( long a, long b ) 
  { 
    BigInteger bigA = BigInteger.valueOf( a ); 
    BigInteger bigB = BigInteger.valueOf( b ); 
 
    return bigB.multiply( bigA ).compareTo( MAX ) <= 0; 
  } 
 
  public static void main( String[] args ) 
  { 
    System.out.println( canMulLong(Long.MAX_VALUE/2, 2) );          // true 
    System.out.println( Long.MAX_VALUE/2 * 2 );       // 9223372036854775806 
    System.out.println( canMulLong(Long.MAX_VALUE/2 + 1, 2) );     // false 
    System.out.println( (Long.MAX_VALUE/2 + 1) * 2 ); //-9223372036854775808 
  } 
}


Ihr Kommentar

Wie hat Ihnen das <openbook> gefallen? Wir freuen uns immer über Ihre freundlichen und kritischen Rückmeldungen.






<< zurück
  Zum Katalog
Zum Katalog: Java ist auch eine Insel





Java ist auch eine Insel
Jetzt bestellen


 Ihre Meinung?
Wie hat Ihnen das <openbook> gefallen?
Ihre Meinung

 Tipp
Zum Katalog: Coding for Fun





 Coding for Fun


 Buchempfehlungen
Zum Katalog: Objektorientierte Programmierung





 Objektorientierte
 Programmierung


Zum Katalog: Einstieg in Eclipse 3.4






 Einstieg in
 Eclipse 3.4


Zum Katalog: Java 6 lernen mit Eclipse






 Java 6 lernen
 mit Eclipse


Zum Katalog: NetBeans Platform 6






 NetBeans
 Platform 6


Zum Katalog: Java und XML






 Java und XML


Zum Katalog: Visual C# 2008






 Visual C# 2008


Zum Katalog: IT-Handbuch für Fachinformatiker






 IT-Handbuch für
 Fachinformatiker


Zum Katalog: C++ von A bis Z






 C++ von A bis Z


 Shopping
Versandkostenfrei bestellen in Deutschland und Österreich
InfoInfo




Copyright © Galileo Press 2009
Für Ihren privaten Gebrauch dürfen Sie die Online-Version natürlich ausdrucken. Ansonsten unterliegt das <openbook> denselben Bestimmungen, wie die gebundene Ausgabe: Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Alle Rechte vorbehalten einschließlich der Vervielfältigung, Übersetzung, Mikroverfilmung sowie Einspeicherung und Verarbeitung in elektronischen Systemen.


[Galileo Computing]

Galileo Press, Rheinwerkallee 4, 53227 Bonn, Tel.: 0228.42150.0, Fax 0228.42150.77, info@galileo-press.de